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LETIER TO THE EDITOR 

Effect of traffic accident on jamming transition in 
traffic-flow model 

Takashi Nagatani 
College of Engineering, Shuuoka University, Hamamatsu 432, Japan 

Received 18 March 1993 

A b &  A cellular atomaton (CA) model is presented to simulate the trafic jam induced 
by a traffic accident. We investigate the effea of a m f i c  accident on the dyoamical jamming 
transition in thc traf6c-0ow model. Thc dynamical jamming mnsition separates the moving 
phase in which all cars are moving and the jamming phase in which all up; are stopped. 
By the use of computer simulation, it is shown that the dynamical jamming ransirion 
occurs at lower dcnrity of cars with increasing delay time of a car passing over the position 
of thc traffic accidenr The phase diagram reprcscnting the moving phasc and the jamming 
phase is shown. We also show the anisotropic effcci of densities of cars on the dynamiul 
jamming transition. 

Recently, traffic problems have attracted considerable attention. The traffic-flow simula- 
tions based on various hydrodynamic models have provided much insight [ 11. However, 
the computer simulation of traffic flow in a whole city is a formidable task since it 
involves many degrees of freedom. The cellular automaton (CA) models have been 
increasingly used in the simulations of complex physical systems [2-41. The CA models 
provide only some general qualitative problems of the complex system while in other 
cases useful quantitative information can be obtained. 

Very recently, Bham, Middleton and Levine [SI have proposed a simple CA model 
(BML model) to describe a tr&c flow in two dimensions. The trafii~flow model is 
given by a three-state CA on the square lattice. Each site contains either a car moving 
upwards, a car moving to the right, or empty. They have found that a dynamical 
jamming transition occurs at the critical density p = p a  (p,-0.3-0.4) with increasing 
density of cars. The dynamical jamming transition separates the low-density moving 
phase in which all cars move and the high-density jamming phase in which all cars 
are stopped. In real traffic-flow systems, the traffic jam is frequently induced by a traffic 
accident. The traffic accident prevents cars from passing over the point of the accident. 
It will be easy for the traffic jam to occur due to the tra5c accident. There is an open 
question as to whether or not the car accident changes the jamming transition. A simple 
CA model taking into account the traffic accident has been unknown until now. 

In this letter, we extend the BML model to take into account a traffic accident. We 
investigate the effect of the traffic accident on the dynamical jamming transition. We 
show the phase diagram representing the moving phase and the jamming phase. Also, 
we show the anisotropic effect of densities of cars on the jamming transition. We find 
that the tra5c accident has an important effect on the jamming transition. 
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We descnie an extended version of the BML model showing a trafEc jam in two 
dimensions. The model is defined on the square lattice of n x n sites with periodic 
boundary conditions. The traffic-flow model is a three-state CA. Figure 1 shows the 
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Figure 1. Schematic illustration of the allular 
automaton madel forthe jamming transition i n d u d  
by the kallic accident in traftic flow. The a m w s  
pointingnprepresentthe cars movingup.Thearrows 
pointing to the right represent the cars moving to the 
right The position in which the traffic accident 
happened is indicated by the solid tdangle. 

schematic illustration of the CA model. Each site contains either an arrow pointing 
upwards, an arrow pointing to the right, or empty. The arrow pointing upwards 
represents the car moving up. The arrow pointing to the right represents the car moving 
to the right. The car accident can occur on any site. However, the tra5c flow does not 
change because of the position of the car accident because of the periodic boundary 
condition. We put the position of the car accident at the centre of the square lattice. 
It is hard for a car to pass over the position of the car accident. We model the tra5c-flow 
condition of the traffic accident as follows. When a car moving up reaches the site at 
the centre of the square lattice, it can pass over after T time steps. The time constant 
T means the delay time of a car flowing over the position of the car accident. 

The limiting case of T = 1 corresponds to the original BML model without the tr&c 
accident. In the limiting case of T+m, a crashed (or stopped) car is introduced on 
the site at the centre of the square lattice. Moving cars are stopped as soon as they 
reach the cluster of jammed cars. One after the other, moving cars are stopped by the 
traffic jam. The tra5c jam propagates from the crashed car to cover all available space. 
The spreading of the tra5c jam is similar to the crystal growth initiated by a seed. In 
the crystal growth process, a single seed triggers the crystal growth. Generally, crystal 
growth may be difficult without a single seed. The crystallition process strongly 
depends on the seed. The crystallization processes are a e r e n t  in the cases with or 
without a seed. Similarly, it will be diEcult for a tra5c jam to occur, without a car 
accident, for a low density of cars. As soon as a crashed (or stopped) car is introduced, 
a traffic jam propagates into all available space. Therefore, there is an analogy between 
the traffic jam and the crystal growth. The limiting case of T+ m is equivalent to the 
ballistic deposition model at a finite concentration for thin films 161. 

The tra5c flow, except the position of the car accident, is described in terms of 
the same CA model as the BML model. The dynamics is controlled by a trafiic light, 
such that the arrows pointing to the right move only during odd time steps and the 
arrows pointing up move during even time steps. During odd time steps, each right 
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arrow moves one step to the right wless the site on its right-hand side is occupied by 
another arrow (which can be either an up or right arrow). If an arrow is blocked by 
another arrow it does not move, even if during the same time step the blocking arrow 
move out of the site. 

In t h i s  model, the tr&c problem is reduced to its simplest form while the essential 
features are maintained. These features include the simultaneous flow in two perpen- 
dicular directions of cars which cannot overlap. Furthermore, this model possesses 
such a property that it is hard for a car to pass over the position of the traffic accident. 
We perform the computer simulation of the traffic-flow model and study the effect of 
the tra5c accident on the traffic jam. The effect of the car accident on the traffic flow 
is included into the delay time T. Initially, cars are randomly distributed at the sites 
on the square lattice. Due to the periodic boundary conditions, the total number of 
arrows of each type is conserved. Moreover, the total number of up arrows in each 
column and the total number of right arrows in each row are conserved, giving rise to 
2n conservation rules. The density of right (up) arrows is given by px (p,)  where the 
density p of cars is p = px +py.  

We have performed computer simulations of the CA model starting with an ensemble 
of random initial conditions for the system size n = 10-50 and the density p = 0.0-1.0 
of cars. Each NLI is obtained after 10000 time steps. We have obtained the mean 
velocities of cars by averaging over 100 runs. Figure 2 shows the plot of the mean 
velocity(u)(=(v,)=(u,)) ofcarsagainstthedensityp ofcars forthedelaytime T= 1-20 
with p , = p y = p / 2  and n =SO. In the case of p x = p y ,  the mean velocity (uJ of cars 
moving to the right equals the mean velocity ( U,) of cars moving up. The mean velocity 
(uJ of right arrows in a unit time interval is defined to be the number of successfully 
moving right a m s  divided by the number of right arrows. The mean velocity (U,) of 
up arrows in a unit time interval is defined to be the number of successfully moving 
up arrows divided by the number of up arrows. The velocity (U) has maximum value 
(U)= 1, indicating that the arrow is never blocked, while (u)=O means that the arrow 
is stopped and never moves at all. The velocity of T =  1 indicated by white circles 
corresponds to that in the original BML model. The mean velocity (U) begins to decrease 
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Figure 2. The plot of the m a n  velocity (0)  of 
cars against the density p of can for the delay 
time T = 1,5, IO, 15 and 20. 

- 
0 



L1018 Letter to the Editor 

sharply nearp ~0.30 and becomes zero at p ~ 0 . 5 0 .  The dynamical jamming transition 
occurs at p = 0.50. The jamming transition separates between the low-density moving 
phase in which ail cars move and the high-density jamming phase in which all cars 
are stopped. In the cases of the traffic accident (T> l), the velocity (U) begins to 
decrease at lower density with increasing delay time T. The jamming transition also 
occurs at lower density of cars with increasing T. The jamming transition depends on 
the system size n. In figure 3, we plot the transition point pc against the inverse l / n  
of the system size for various values of the delay time T Here we define the transition 
point p. as the value of p in which (U) = 0.5. By extrapolation, we estimate the value 
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Figure3. The plot ofthejamming transition point 
pE against the inverse 1/n of the system size for 
extrapolation. 

of the transition point in the limit of an infinite system size. Figure 4 shows the phase 
diagram between the density p and the inverse 1/T of the delay time. The phase 
diagram is obtained from the estimated value of the transition point in the infinite 
limit. Also, the black circles indicate the transition point for n = 50. The region on the 
left-hand side of the solid curve indicates the moving phase in which all cars move. 
The region on the right-hand side of the solid curve indicates the jamming phase in 
which all cars are stopped. With increasing delay time T, it is easy for a traffic jam to 
occur. In the limit of T+ 00, the tra5c jam occurs at p + 0. Moving cars are stopped 
as soon as they reach the position of the traffic accident. One after the other, moving 
cars are stopped by the jammed cars. The jammed cars grows with increasing time. 
The traffic accident induces the traffic jam even at a low density of cars. The car 
accident has an important effect on the jamming transition. 

We study the anisotropic effect of densities of cars on the dynamical jamming 
transition. In the anisotropic case in which p, fp,, the density of cars moving up is 
defined by pv =pfand the density of cars moving to the right is defined byp, =p(l  -f) 
where p is the total density of cars and f is the fraction of cars moving up. Figure 5 
shows the plots of the mean velocities (U,} and (UJ of cars against the density p of 
cars for the fractionf=0.8 and 0.9 with delay time T =  10 and the system size n = 50. 
The data points are compared with those (T= 10) indicated by white triangles in figure 
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Figure 5. The plot of the mean velocity 
(U,) of cars moving to the tight and the 
mean velocity (U,.) of cars moving against 

Jamming phase 

Fignre4. Thephasediagram ofthe dynamical 
jamming transition. The densify p of cars at 
the transition point is plotted against the 
inverse 11 T of the delay time. The solid curye 
indimes the jamming transition points in the 
limit of the infinite system &e. The solid 
circles indicate the transition p i n t  for the 
system size n = 50. 
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Figure 6. The phase diagram of the jamming 
transition representing the anisotropic eilect. 
The density p of can at the transition point 
is plotted against the fraction f for T = l  
and 10. 

The density p of cars at the transition point is plotted against the fraction f for the 
cases of T = 1 and 10. The data of T= 1 means the tra5cjams without the car accident. 
The jamming transition shifts to the region of low density by the effect of the traffic 
accident. The anisotropic densities of cars also have an important effect on the jamming 
transition. It is hard for right arrows to block up arrows in the anisotropic case f > 0.5. 
Therefore, the jamming transition occurs at higher density with an increase in the 
anisotropic effect. 

In summary, we extend the BML model to take into account the traffic accident. 
We investigate the effect of the tra5c accident on the tra5c jam by using computer 
simulation. We find the phase diagram representing the jamming transition. We also 
show the anisotropic effect of densities of cars on the jamming transition. 
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